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Abstract 
Low emittance electron storage rings, such as those 

used in third generation light sources or linear collider 
damping rings, rely for their performance on highly stable 
alignment of the lattice components.  Even if all vibration 
and environmental noise sources could be suppressed, 
diffusive ground motion will lead to orbit drift and 
emittance growth.  Understanding such motion is 
important for predicting the performance of a planned 
accelerator and designing a correction system.  A 
description (known as the ATL model) of ground motion 
over relatively long time scales has been developed and 
has become the standard for studies of the long straight 
beamlines in linear colliders.  Here, we show how the 
model may be developed to include beamlines of any 
geometry.  We apply the model to the NLC and TESLA 
damping rings, to compare their relative stability under 
different conditions. 

ATL FOR LINEAR GEOMETRIES 
Damping rings for future linear colliders will need to 

operate with equilibrium vertical emittances of a few 
picometers (unnormalized).  Achieving such highly 
focused beams will depend on precise alignment of 
beamline components, particularly the quadrupole and 
sextupole magnets, and effective steering and coupling 
correction algorithms.  Small movements of the 
quadrupoles and sextupoles over time will necessitate 
(possibly invasive) retuning of the ring, and it is important 
to estimate at the design stage how frequently such tuning 
may be required.  Although movement of magnets and 
diagnostic components can occur from a variety of causes, 
for example thermal effects or mechanical stress on the 
supports, a significant contribution to the motion is 
expected to come from the ground itself. 

Ground motion in a variety of regimes relevant for high 
energy beamlines has been discussed in some detail by 
Napoli and Seryi [1].  In this paper, we consider only the 
slow or diffusive ground motion, which is described by 
the ATL model: 

 ( ) ijji ATLYY =− 2  (1) 

Here, Yi is the vertical position of the ith beamline 
component relative to some (conceptual) fixed reference 
point, T is the time after initial (perfect) alignment, and Lij 
is the horizontal distance between components i and j.  
The parameter A is a constant characteristic of the site on 
which the accelerator is built: “quieter” or “more stable” 

sites have lower values of A.  The angled brackets indicate 
an average over an ensemble, or in practice, the mean 
value over a number of different random seeds.  In the 
original paper [1], the authors considered only the 
application of this model to linear systems, such as the 
main linac or beam delivery system of a linear collider.  
In such a system, it is straightforward to apply the ATL 
model (1) in a simulation.  For a given time step T it is 
only necessary to start at one end, giving each component 
a random displacement with respect to the previous 
component, with the variance of the displacement given 
by ATL, with L the distance between the components.  
This generates a “random walk” and one finds that the 
relative displacement of any two components in the 
beamline then obeys the ATL model.  

Attempting to apply this procedure to a storage ring 
will result in failure, since Lij becomes the arc length 
between two components, rather than the direct horizontal 
distance that is required by the model.  The start and end 
points, for example, will typically be close together, but 
will have a relative misalignment characteristic of the 
circumference of the ring, which may be very large. 

Since the ATL model is now the standard description 
for linacs and beam delivery systems in linear colliders 
[2], it is desirable to be able to apply the same model to 
describe the motion of components in other parts of the 
machine, in particular the damping rings, where alignment 
is an important issue.  We therefore describe here a 
technique for applying the ATL model in a consistent way 
to beamlines that are not rectilinear. 

ATL FOR GENERAL PLANAR 
GEOMETRIES 

Theoretical Analysis 
First, we choose a fixed reference point j=0.  For any 

component i we can then write: 

0
2

ii ATLY =  

Noting that: 

( ) jijiji YYYYYY 2222 −+=−  

it then follows that: 

 ( ) ijijjiji ATMLLLATYY =−+⋅= 002
1  (2) 

which defines the matrix M with components Mij.  We 
can write equation (2) in terms of the outer product of the 
vector Y (with components Yi) with itself: 

 MYY AT=⋅ T  (3) 

_________________________________________  

*Work supported by the US DOE, contract DE-AC03-76SF00098.  
#awolski@lbl.gov 

 



Since M is symmetric, it can be diagonalized by a unitary 
matrix Λ: 

T~
MM ⋅⋅=  

The components of M
~  are the eigenvalues λi of M: 

ijiijM δλ=~
 

Λ is of course constructed from the eigenvectors of M.  It 
is important that we choose an orthonormal basis for the 
eigenvectors, otherwise M

~  is not diagonal – this is 
discussed further below.  We define the vector V: 

YV ⋅=  

By premultiplying equation (3) by Λ and postmultiplying 
by ΛT, we see that the components of V satisfy: 

 
ii ATV λ=2  (4) 

Equation (4) is our result: it is all we need to apply the 
ATL ground motion model to a general planar geometry.  
Explicitly, from the distances between the components 
and a chosen fixed reference point, we construct the 
symmetric matrix M, and find its eigensystem.  We then 
generate a set of values with variances given by the 
eigenvalues of M, and transform these values using the 
eigenvectors of M to find the corresponding vertical 
displacements of the components.  The case of a 
rectilinear beamline is of course a special case of this 
general model. 

Implementation Issues 
We commented above that it is important to choose an 

orthonormal basis for the eigenvectors of M.  It is easy to 
show that if the eigenvalues are all distinct, then the 
eigenvectors of a symmetric matrix are necessarily 
orthogonal.  However, eigenvectors corresponding to 
repeated eigenvalues may become “mixed” in such a way 
that they are not orthogonal.  In this case, the matrix M

~  is 
not diagonal, and the above procedure will fail, since the 
final result (4) is not correct. 

The question then arises, as to which situations will 
give rise to repeated eigenvalues of M?  This is a difficult 
question to answer completely, but in general, repeated 
eigenvalues are an indication of some symmetry in the 
system.  For example, one finds that if the system consists 
of N points equally distributed on a circle with the 
reference point at the center, the eigenvalues occur in (N-
2)/2 or (N-1)/2 pairs according to whether N is even or 
odd.  Moving the reference point away from the center 
reduces the number of pairs of eigenvalues, and choosing 
a reference point on the circle renders them all distinct. 

Fortunately, where repeated eigenvalues do occur, the 
above technique can still be applied: it is, however, 
necessary to ensure that the eigenvectors form and 
orthonormal basis.   

Large accelerators (for example, the TESLA Damping 
Ring) may consist of many hundreds of components, in 
which case we need to find the eigensystem of a large 

matrix.  This is not necessarily an obstacle, since efficient 
numerical algorithms exist for this task.  Also, for a given 
accelerator design, it is only necessary to perform the 
eigensystem analysis once.  The eigenvalues and 
eigenvectors can then be saved for application of the ATL 
model for simulations over different timescales. 

EXAMPLES 

Regular Grid 
To test the technique, it is interesting to apply it to a 

regular grid of points.  In this case, one expects to see the 
correlation of vertical displacement with distance to show 
up clearly (or not, in the case of some flaw in the theory 
or its application).  The application is conveniently carried 
out in any mathematical program capable of an 
eigensystem analysis of a large matrix.  We have used 
Mathematica [3]: our grid consisted of 25×25 points, with 
the reference point at the origin.  Initially, all points are at 
Y=0.  Figure 1 shows that grid after 5, 10, 30 and 50 time 
steps (the value of A is 5×10-4). 
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Figure 1: ATL Applied to a Rectangular Grid of Points 

Clearly, the displacements of the points on the grid are 
correlated, with the average relative displacement 
between two points increasing with the distance between 
the points. 

The NLC Main Damping Rings 
For a storage ring, we are generally interested in 

questions such as the change in the closed orbit and the 
vertical emittance degradation when the main magnets in 
the lattice move.  It is therefore convenient to have the 
ATL model integrated into an accelerator simulation 
code.  We have implemented the 2D ATL model into the 
tracking code MERLIN [4], and applied the model to the 
NLC Main Damping Rings [5] and the TESLA Damping 
Rings [6]. 

Figure 2 shows the effects of ATL ground motion 
applied to the quadrupoles of the NLC Main Damping 
Ring over a period of 30 hours, starting from a perfect 



alignment.  The blue points show the quadrupoles, and the 
red line shows the closed orbit.  The value of A used in 
the simulation was 4×10-6 µm2/m/s.  The horizontal scales 
are in meters, and the vertical scales are in microns. 
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Figure 2:  Effect of ATL Ground Motion on the Closed 
Orbit in the NLC Main Damping Rings 

EMITTANCE TUNING 
Maintenance of very low vertical emittance over long 

periods is an important issue for linear collider damping 
rings, as this has a direct impact on the rate at which the 
linear collider can integrate luminosity.  Although it is 
expected that low emittance may be maintained to some 

extent by a straightforward orbit correction, it is important 
to know how frequently more invasive tuning procedures 
may be required. 

 

 

 
Figure 3:  Emittance Growth from ATL Ground Motion in 

the NLC (top) and TESLA Damping Rings 

Figure 3 shows the growth of the normalized vertical 
emittance from ATL ground motion in the NLC Main 
Damping Rings and the TESLA Damping Rings.  The 
rings were initially misaligned by applying 50 hours of 
ATL ground motion to the quadrupoles and sextupoles, 
followed by a full coupling correction.  Without orbit 
correction, a rapid emittance growth can be seen for A = 
10-17 m/s (NLC and TESLA) and A = 5×10-19 m/s 
(TESLA).  An orbit correction at half-hourly intervals to 5 
µm is effective at suppressing the emittance growth. 
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